On non-normal non-abelian subgroups of finite groups

author

  • C. Zhang School of Mathematics and Information Science‎, ‎Yantai University‎, ‎Yantai 264005‎, ‎China.
Abstract:

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we show that a‎ ‎finite group $G$ with at most three same order classes of non-normal‎ ‎non-abelian proper subgroups is always solvable except for $Gcong‎{A_5}$‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

full text

The number of Fuzzy subgroups of some non-abelian groups

In this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. Explicit formulas are givenfor dihedral groups $D_{2n}$, quasi-dihedral groups $QD_{2^n}$, generalized quaternion groups $Q_{4n}$ and modular $p$-groups $M_{p^n}$.

full text

Triple factorization of non-abelian groups by two maximal subgroups

The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...

full text

finite $p$-groups and centralizers of non-cyclic abelian subgroups

a $p$-group $g$ is called a $mathcal{cac}$-$p$-group if $c_g(h)/h$ is ‎cyclic for every non-cyclic abelian subgroup $h$ in $g$ with $hnleq‎ ‎z(g)$‎. ‎in this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{cac}$-$p$-groups‎.

full text

Nilpotent groups with three conjugacy classes of non-normal subgroups

‎Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$‎. ‎In this paper‎, ‎all nilpotent groups $G$ with $nu(G)=3$ are classified‎.  

full text

Classifying fuzzy normal subgroups of finite groups

In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 43  issue 3

pages  659- 663

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023